Multi-Resolution Mapping and Accuracy Assessment of Forest Carbon Density by Combining Image and Plot Data from a Nested and Clustering Sampling Design
نویسندگان
چکیده
Combining sample plot and image data has been widely used to map forest carbon density at local, regional, national and global scales. When mapping is conducted using multiple spatial resolution images at different scales, field observations have to be collected at the corresponding resolutions to match image values in pixel sizes. Given a study area, however, to save time and cost, field observations are often collected from sample plots having a fixed size. This will lead to inconsistency of spatial resolutions between sample plots and image pixels and impede the mapping and product quality assessment. In this study, a methodological framework was proposed to conduct mapping and accuracy assessment of forest carbon density at four spatial resolutions by combining remotely sensed data and reference values of sample plots from a systematical, nested and clustering sampling design. This design led to one field observation dataset at a 30 m spatial resolution sample plot level and three other reference datasets by averaging the observations from three, five and seven sample plots within each of 250 m and 500 m sub-blocks and 1000 m blocks, respectively. The datasets matched the pixel values of a Landsat 8 image and three MODIS products. A sequential Gaussian co-simulation (SGCS) and a sequential Gaussian block co-simulation (SGBCS), an upscaling algorithm, were employed to map forest carbon density at the spatial resolutions. This methodology was tested for mapping forest carbon density in Huang-Feng-Qiao forest farm of You County in Eastern Hunan of China. The results showed that: First, all of the means of predicted forest carbon density values at four spatial resolutions fell in the confidence intervals of the reference data at a significance level of 0.05. Second, the systematical, nested and clustering sampling design provided the potential to obtain spatial information of forest carbon density at multiple spatial resolutions. Third, the relative root mean square error (RMSE) of predicted values at the plot level was much greater than those at the sub-block and block levels. Moreover, the accuracies of the up-scaled estimates were much higher than those from previous studies. In addition, at the same spatial resolution, SGCSWA (scaling up the SGCS and Landsat derived 30 m resolution map using a window average (WA)) resulted in smallest relative RMSEs of up-scaled predictions, followed by combinations of Landsat images and SGBCS. The accuracies from both methods were significantly greater than those from the combinations of MODIS images and SGCS. Overall, this study implied that the combinations of Landsat 8 images and SGCSWA or SGBCS with the systematical, nested and clustering sampling design provided the potential to formulate a methodological framework to map forest carbon density and conduct accuracy assessment at multiple spatial resolutions. However, this methodology needs to be further refined and examined in other forest landscapes. Remote Sens. 2016, 8, 571; doi:10.3390/rs8070571 www.mdpi.com/journal/remotesensing Remote Sens. 2016, 8, 571 2 of 22
منابع مشابه
Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملForest Stand Types Classification Using Tree-Based Algorithms and SPOT-HRG Data
Forest types mapping, is one of the most necessary elements in the forest management and silviculture treatments. Traditional methods such as field surveys are almost time-consuming and cost-intensive. Improvements in remote sensing data sources and classification –estimation methods are preparing new opportunities for obtaining more accurate forest biophysical attributes maps. This research co...
متن کاملEstimation of local forest attributes, utilizing two-phase sampling and auxiliary data
This thesis examines the feasibility of a forest inventory method based on two-phase sampling in estimating forest attributes at the stand or substand levels for forest management purposes. The method is based on multi-source forest inventory combining auxiliary data consisting of remote sensing imagery or other geographic information and field measurements. Auxiliary data are utilized as first...
متن کاملIntroducing the improved Forest Canopy density (FCD) model for frequent assessment of Hyrcanian forest
Mapping of forest extent is a prerequisite to acquire quantitative and qualitative information about forests and to formulate management and conservation strategies. forest canopy density (FCD) model is one of the useful RS methods for forest mapping using satellite images. One of the most serious challenges in FCD model is the weakness in the calculation of canopy density in low density forest...
متن کاملGeostatistically estimation and mapping of forest stock in a natural unmanaged forest in the Caspian region of Iran
Estimation and mapping of forest resources are preconditions for management, planning and research. In this study, we applied kriging interpolation of geostatistics for estimation and mapping of forest stock at-tributes in a natural, uneven-aged, unmanaged forest in the Caspian region of northern Iran. The site of the study has an area of 516 ha and an elevation that ranges from 1100 to 1450 m ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016